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Chapter 1 

Introduction 

Electromagnetic shields are used to reduce the electromagnetic field strengths in a 

volume of space due to sources external to that volume. Shields have traditionally 

been used to reduce electromagnetic interference to sensitive electrical equipment. 

More recently there is a growing concern over the potential harmful biological effects 

of the electromagnetic fields radiated by 60 Hz power lines [1], and this report focuses 

on the extremely low frequency (ELF) shielding problem. The problem of electromag- 

netic shielding has been considered by a number of authors [2]-[10], however, except 

for recent work involving the finite element method [11] this work has been primarily 

limited to shields of simple shape such as planar, circular cylindrical, and spherical. 

Here we present an integral equation and method of moments (MM) [12] solution for 

TM to z ELF transmission by a conducting cylindrical shield of essentially arbitrary 

shape. 

The basic theory for the integral equation and MM solution for the TM shield 

is identical to that for the TM dielectric cylinder and is thus well known [12, Sec. 

3-7],[14] and has been implemented in terms of user oriented computer codes [15]. 

However, it is felt that these standard methods and codes will fail when applied 

to the problem of the ELF shield. The reason is that while the shields are always 

extremely thin in terms of a free space wavelength, they are typically comparable to a 

wavelength in the shield medium. For example, for an aluminum shield of conductivity 

a = 35MÖ/m, and thickness T = 1cm at a frequency of / = 60Hz, 

k0T = 1.26 x 10_B and 7T = 0.911 + jO.911 



where k0 is the free space wavenumber and 7 is the propagation constant in the shield 

medium. Virtually all MM codes applicable to arbitrary geometries employ subsec- 

tional basis functions [12, Sec. 1.5]. In general it will be necessary to have several 

subsectional basis functions per |7|T to model the variation of the fields through the 

thickness of the shield. It has been found that the accuracy of the MM solution is crit- 

ically dependent upon the accurate computation of the self and mutual impedances 

between these basis functions. However, few codes are written to accurately distin- 

guish between the self impedance of a basis function and a mutual impedance when 

the separation is on the order of koT = 10~8. 

Section 2 presents the basic theory for the volume integral equation and its so- 

lution by the MM. In order to have an efficient solution, which avoids the need for 

several subsectional basis functions per |7|T through the thickness of the shield, a 

physical basis [16] expansion for the current is employed. This physical basis ex- 

pansion represents the volume equivalent shield current in terms of an Outer mode 

corresponding to fields propagating from the outer to the inner surface of the shield, 

and an Inner mode corresponding to fields propagating from the inner to the outer 

surface of the shield. When presenting expressions for the elements in the MM matrix 

equation, emphasis is placed upon the use of ELF approximations to obtain closed 

form expressions which insure the proper relative magnitude for the self and mutual 

impedances between the Outer and Inner modes. In Section 3, numerical results are 

shown to illustrate the accuracy and limitations of the method. In brief, it is found 

that the MM solution can accurately compute the equivalent current representing the 

shield. However, the current is not sufficiently accurate to compute the extreme near 

zone fields, and thus is not sufficiently accurate to directly compute either the electric 

or the magnetic shielding factors. An alternate method for computing the shielding 

factors is presented which yields good results for the electric but not the magnetic 

shielding factor. 



Chapter 2 

Theory 

2.1     The Volume Integral Equation 

Figure 2.1(a) shows the original problem in which the TM to z plane wave 

E* = zi£0e
JM;rcos<k+!/sin<fr) (2.1) 

incident from the angle fa with respect to the x axis, produces the unknown total 

electric field, E, when incident on a 2D non-magnetic conducting shield of thickness 

T. The ambient medium is free space (or any homogeneous medium) with material 

parameters (fio, eo), intrinsic impedance 770 = Jfio/eo, and wavenumber ko = u^Jfioeo, 

where w = 2nf is the radian frequency. The inhomogeneous shield Region R, has 

relative permittivity er(Z), conductivity <T{1), and complex permittivity 

e(l) = er(l)e0-j^       -f<*<§ (2-2) 

where I measures position along the centerline of the shield. All fields and currents 

are time harmonic, with the exp(jut) time dependence suppressed. 

As illustrated in Figure 2.1(b), the first step in obtaining the integral equation 

is to use the volume equivalence theorem [17, Sec. 3-11], [18, Sec. 7.7] to replace 

the shield by free space and by the unknown equivalent electric volume polarization 

currents 

J = ju(e - e0)E     in R. (2.3) 

In the equivalent problem of Figure 2.1(b), the total electric field, E at any point in 

space, is the superposition of the incident electric field of Equation (2.1) plus the free 

3 



<Pi     (Mo>eo) 

Shield 
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(a)    The   Original   Problem 

(Mo.e0) 

Shield 
Region   R 

(b)    The  Equivalent   Problem 

Figure 2.1: (a) A TM polarized plane wave is incident upon a conducting shield; (b) 
the shield is replaced by free and the equivalence volume polarization current J. 



space fields of J, i.e., 

E = E' + EJ      all space (2.4) 

where E is the free space electric field of J. For the TM polarization, all electric 

fields and equivalent electric currents are z directed, and thus the vector notation 

will be dropped. Inserting Equation (2.4) into (2.3) results in the volume integral 

equation [14], [12, Sec. 3-7] 

-E
J
 + T-A T = Ei     mR. (2.5) 

ju;(e - e0) 

2.2    MM Solution 

The first step in the MM [12] solution of Equation (2.5) is to expand the unknown 

current J(l, i) in terms of an appropriate set of expansion functions. Although the 

actual shield may be curved, as illustrated in Figure 2.1, for the purpose of defining 

the expansion functions the cross section region of the shield is approximated by N 

thin trapezoidal cells. Let en denote the assumed constant value of e in cell n. E 

and J will be approximated as being independent of I within each trapezoidal cell. 

By contrast, E and J should not be approximated as constant through the thickness 

(—T/2 < t < T/2) of the shield, since typically T will be on the order of a few 

skin depths, 8, in the shield material. As illustrated in Figure 2.2(a), if a standard 

subsectional expansion (such as pulse or triangular) is used for the t variation of 

J(l,t), then several subsections per skin depth would be required through the shield 

thickness. Assuming that 10 subsections per 8 are required, the total number of 

subsections or unknowns would be 10NT/6 which would become large if T ^> 8. 

To avoid the necessity of several unknowns per T/8 inherent in a standard subsec- 

tional expansion, we will employ a physical basis expansion [13]. The physical basis 

expansion is based upon the physical insight that when an electromagnetic wave in 

free space hits the interface of a medium of much higher density, the wave which 

is transmitted into the higher density medium will propagate almost normal to the 

interface. In our case, the shield medium is typically a good conductor (with a on the 

order of 107U/m) and is much denser than free space. Thus, there will be a wave with 



(a) Standard Subsectional Expansion in Cell n 

T«W 

Inner Surface 
tA  Weighting Strip 2 

eLvofCeHn 
/ 

Expansion Strip 1 

Outer Surface 
(b) Physical Basis Expansion in Cell n 

Figure 2.2:   (a) A standard subsectional and (b) physical basis expansion for the 
current in trapezoidal cell n. 



t variation of the form exp(—jt) propagating from the outer to the inner surface of 

the shield, where 7 = w^fioe is the propagation constant in the shield medium. When 

this wave hits the inner interface at t = T/2, it will produce a reflected wave with t 

variation of the form exp(+7^). Thus, as illustrated in Figure 2.2(b), the current in 

the nth trapezoidal cell will be expanded in terms of the Outer and Inner physical 

basis expansion functions 

J°{t)   =   Kne~lnt      A/m2 in cell n, 0 otherwise 

Jj.it)   =   irne
+7nt      A/m2 in cell n, 0 otherwise (2.6) 

where 7„ = Wy/fi0en and Kn is a normalizing constant chosen here such that 

rr/2    „ , 
J°'\t) dt = 1      A/m (2.7) 

T/2 /. 

and thus 

jr- = JSdfe)-?"Wr^°- (2-8) 

The physical basis expansion for J(l,t) is 

N 

j(M)« E #tf (0 + #£(*) (2.9) 

in which the 1% and I„ are JV unknown coefficients in the expansions for the Outer 

and Inner currents, respectively, and involves 2N unknowns regardless of T/6. 

Substituting the expansion of Equation (2.9) into the volume integral Equation 

(2.5) yields 

N 

EW + 'X7 
Ln=l 

+ 
N    TO JO 

E W(0 + #n'(*)' E{     in R (2.10) 
Ln=l JW(e" - £o) 

where E%,r is the free space electric field of expansion function J°fI. Employing 

Galerkin's method, with weighting functions chosen identical to the expansion func- 

tions, we multiply both sides of Equation (2.10) by J° (m = 1,2,..., N) and integrate 

over the cross section Region R of the shield. Next, we multiply both sides of Equa- 

tion (2.10) by Jjn (m = 1,2,..., N) and again integrate over the cross section Region 

R of the shield.   This will reduce Equation (2.10) to an order 2N matrix equation 



= (2.11) 
//        v1 

which can be written in block matrix form as 

Z°° + AZ00   Z0I + AZ01 

zio + Azw     zn + AZII 

in which the first superscript indicates the weighting function and the second the 

expansion function, and 1° and I1 are length N vectors which hold the 1% and I!
n 

coefficients from the expansion of Equation (2.9). Typical elements of the symmetric 

MM matrix equation are for m, n — 1,2,..., N 

ZP
m
Q

n=~l E*JZ ds = ZZ (2.12) 
Jm 

AZPQ = I 
Jn 

.£&-,ds = AZSZ (2-13) 
m ]u(en - Co) 

V: = ( E'JZ ds (2.14) 
Jm 

in which expansion function P and weighting function Q are 0 or I for the Outer or 

Inner basis functions, respectively, and where the integrals are over the cross section 

region of trapezoidal weighting cell m. The [AZ] matrices are diagonal since their 

integrands are non zero only when m = n. If trapezoidal cell n is approximated as a 

rectangular cell of width Wn and thickness T, then the diagonal [AZ] matrices reduce 

to 

AZ^n
0 = AZ» =        ™nK:,     sinh 7„T (2.15) 

W K2 

AZ01 = AZ10 = "   "   ST. (2.16) 

2.3    Same Cell Impedance Terms 

The solution of the MM matrix Equation (2.11) is critically dependent upon the 

difference between the self impedance of the Outer or Inner basis functions and the 

mutual impedance between the Outer and Inner basis functions in the same cell, i.e., 

on 

Z2?-Z%     or     ZZ-ZZ. (2.17) 

At ELF these impedance differences are extremely small, and special care must be 

taken so that the subtractions in Equations (2.17) are accurate. To accomplish this, 

8 



we obtain closed form expressions for these impedances written as the sum of a large 

term, which is identical for all four impedances, plus small terms. 

Figure 2.2(b) shows trapezoidal cell n of inner width W^, outer width W°, and 

center width Wn. Letting P or Q be 0 or I, the four self and mutual impedances in 

cell n can be written as 

/T/2    tTl2 
T/J_T/2Z21(t,t')jZ(t)J2(t') dt dt'     P,Q = 0,I (2.18) 

in which Z2i(t, t') is the mutual impedance between expansion Strip 1 at t' and weight- 

ing Strip 2 at t. Appendix A uses ELF approximations to develop simple expressions 

for this mutual impedance as a function of the strip widths and separations. The 

width of Strips 1 and 2 can be written as 

Wi{H) = Wn + aj and W2(t) = Wn + ant (2.19) 

in which an = (Wn
7 - W°)/T. Inserting Equation (2.19) into either Equation (A.17) 

or (A.18) and dropping second order small terms yields 

Zai(M')   =   Z12(t',t)KZnn-CanWn(t + t') (2.20) 

+   j— [,cWn\t - t'\ + anWn(ln{bWn) - l)(i + *')] 
7T 

in which the constants b = 0.8905fco and C = -k0rj0/A, and Znn is the self impedance 

of a strip of width Wn as given by Equation (A.14). Equation (2.20) can be viewed 

as the first two terms in a Taylor series approximation to Z2i(t,t'). 

Equation (2.20) can be inserted into (2.18) and the integrations can be carried 

out in closed form. The result is 

CQ   «   Znn-CanWn[h{lP) + h{lQ)) (2.21) 
2C 

+   j— [7rWnS(lP,lQ) + anWn(ln{bWn) - l)[/i(7p) + Jifa)]] 
7T 

in which 

7i^)= lZ IT,1^ j»wdt> dt        (2-22^ J-T/2 J-T/2 

7P L  2 2 



rT/2    /.T/2 /ins.    pi   z 
\t- tV:(t)J*(t') dt' dt (2.23) 

-772 J-T 2 

±K2
n         . ,.             ,T     2iT„cosh(7pT/2)rr .    ,     _ .    .. 

sinh(7p + JQ)- + u '[HIP) ~ h{lo)] 
1P{IP+1Q) 2 IP 

(2.24) 

-7n   P,<? = 0 

^ = ^2   —2 
^tanh^-1 

7P,Q = S (2.25) 
+7„   P,0 = J 

Note that Equation (2.21) expresses the four self and mutual impedances in cell n as 

the sum of a large term, Znn which is the same for all four impedances, plus small 

terms. This allows the accurate evaluation of the impedance differences in Equation 

(2.17), and is crucial in obtaining accurate numerical results. Equation (2.21) obeys 

the reciprocity relationship Z°„ = Z™, and further these mutual impedances are 

independent of a„. However, Z°° ^ Z^n except for rectangular cells with an = 0. 

As a numerical example, Figure 2.3 shows trapezoidal cell n of thickness T, center- 

line width Wn = 1 m, Outer width W° = Wn + T/2, Inner width W* = Wn-T/2 and 

conductivity a = 35MU/m. At / = 100Hz, the figure shows the real and imaginary 

parts of Z°° (solid line), Z°n
7 (dashed line) and the self impedance of a strip of width 

Wn (dotted line) as a function of Wn/T (with T variable and Wn fixed). Note that 

for large Wn/T (as T —> 0), Z°„ = the Outer to Inner mutual impedance approaches 

Z%° = the Outer to Outer self impedance and Znn = the self impedance of a strip 

of width Wn. 

2.4    Different Cell Impedance Terms 

Referring to Figure 2.4 the four mutual impedances between expansion cell n and 

weighting cell m can be written as 

PT/2     ,T/2 

-X/2 J-T 12 

in which Z2i(t,t') is the mutual impedance between expansion Strip 1 at t' in cell n 

and weighting Strip 2 at tin cell m. Closed form expressions for Z2i(t,t') are given in 

Appendix B. The remaining double integral in Equation (2.26) is done numerically. 

10 
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Figure 2.3: The self and mutual impedances between the Outer and Inner modes in 
a trapezoidal cell as a function of the thickness T. 
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Figure 2.4: The reaction between the Inner and Outer modes in weighting cell m and 
the incident plane wave. 

2.5     The Voltage Vector 

Referring to Figure 2.4, a typical element of the voltage vector, Equation (2.14), can 

be written as 
rT/2 

v™ = L, MO.£(O* (2-27) J-T/2 

where Vm(t) is the reaction between the incident field of Equation (2.1) and a unit 

amplitude strip at position t in cell m. The reaction between this incident field and 

a unit amplitude strip of width W centered at (x,y) and making an angle ij) with 

respect to the -\-x axis, is 

J*(x,y) 2sin[0.5fc0Wcos(y>-(ft,-)] 
V(x,y) = E0e> (2.28) 

ko cos(^ — <f>i) 

in which 

$(x,y) = k0(x cos <j>i + ysin^>,) (2.29) 

is the phase of the incident plane wave of Equation (2.1) at the center of the strip. 

At ELF, k0W < 1, and Equation (2.28) reduces to 

V(x,y)&E0W(l+j${x,y)). (2.30) 

12 



The (x,y) coordinates of the center of the strip at position t in Figure 2.4 are 

x = xm + tmxt  and  y = ym + tmyt (2.31) 

where tm = £mix + tmyy is a unit vector in the -\-t direction in cell m. Then using 

Equations (2.19) and (2.31) in (2.30), the ELF approximation to the reaction between 

the incident plane wave and the strip at t is 

V(t) « E0(Wm + amt){l + jk0[(xm + tmxt) cos & + (ym + «„,„0 sin ^]}.       (2.32) 

Expanding Equation (2.32) and dropping terms of order t2 yields 

V(t) = Kno + jEoWfBt$(<„,xcoB^-,<mtf sin^-) + ^Kno (2.33) 

where V^o ~ -^oWmfl + j$(xm,ym)] is the reaction between the incident plane wave 

and the centerline strip in cell m. Inserting Equation (2.33) into (2.27), and using 

the integral of Equation (2.22), the reaction between the incident plane wave and the 

Inner or Outer weighting function in cell m is 

V£ = VmG + {^P-Vm0 + jE0Wm${tmx cos fatmy sin &)} h(lp) (2-34) 

with 7P given by + or — 7m for the Inner or Outer current, respectively. Note that 

V£ is written as the sum of a large term, Vmo, plus small terms. 

2.6     Shielding Factor 

2.6.1     Method 1: Direct Computation 

The electric shielding factor is defined by 

[Electric Field at (x,y) With the Shield| 
e^'^   "    |Electric Field at (x,y) Without the Shield| (       ^ 

\E\x,y) + Es{x,y) 
(2.36) mx,y)\ 

Es is the scattered electric field, i.e., the free space electric field of the equivalent 

polarization currents of Equation (2.9), and is given by 

Es(x,y) = £tfi£(*,y) + JXW) (2.37) 
n=l 

13 



where E®'1 is the free space electric field of expansion current J^*'7.   E^'1 can be 

computed as 

E^(x,y) = /       J^WE^t'-^y) dt' (2.38) 
J-T/2 

where as given by Equation (A.4), Ei(t';x,y) is the free space electric field of a unit 

amplitude strip located at position t' in trapezoidal cell n. 

In a parallel fashion, one can define the magnetic shielding factor as 

_       I Magnetic Field at (x,y) With the Shield| . 
SFm{x,y)   =    |Magnetk Field at (^y) Without the Shield| ('    ' 

|H'(s,y) + Hs(s,y)| Q) 

|H'-(*,y)l        ' K 

H5 is the scattered magnetic field, i.e., the free space magnetic field of the equivalent 

polarization currents of Equation (2.9) and is given by 

H5(*,y)= Ei?H?(*,y) +JjH^y) (2-41) 
n=l 

where H°'7 is the free space magnetic field of expansion current J®'1. H°'7 can be 

computed as 
/•TV2    ~ , 

H°>I(x,y)= J^im^x^dt' (2.42) 
J —112 

where as given by Equation (A.7), H(£'; x,y) is the free space magnetic field of a unit 

amplitude strip located at position t' in trapezoidal cell n. 

Direct computation of the shielding factors using Equations (2.35)-(2.42) is ex- 

tremely difficult for two reasons. First, as pointed out by Demarest and Garbacz 

[19] it is notoriously difficult to accurately compute extreme near zone fields with 

the MM. In particular, small variations in the current and its derivatives, caused by 

such factors as the choice of expansion and weighting functions, can result in large 

variations of the extreme near zone fields. Second, as the shielding factors go to zero, 

the scattered fields must approach the negative of the incident fields, and extreme 

accuracy is required in order to accurately compute (in effect) the subtraction of two 

nearly equal numbers in the numerators of Equations (2.36) and (2.40). For example, 

for a shielding factor of 0.01 (-40 dB), the near zone scattered fields would need to 

be computed to at least three digits of accuracy. 

14 



Figure 2.5 illustrates the difficulty in computing the shielding factors using Equa- 

tions (2.36) and (2.40). The insert in Figure 2.5 shows a perfectly conducting square 

shield of side length 1 m. The figure shows the electric and magnetic shielding factors 

at (x,y) = (0.25,0.25) m, computed by Equations (2.36) and (2.40), respectively, as a 

function of TV/4 = the number of pulse expansion functions per side. Since the shield 

is perfectly conducting, the shielding factors are zero (—oo dB), and thus this figure 

shows a lower limit the smallest shielding factors which can be computed via Equa- 

tions (2.36) and (2.40). As JV/4 goes from 1 to 19 segments per side, SFe goes from 

about -60 to -105 dB. Thus, it may be possible to compute SFe with Equation (2.36), 

especially if one is willing to use several segments per side. By contrast, as TV/4 goes 

from 1 to 19 segments per side, SFm goes from about +60 to +20 dB, indicating a 

complete failure of the MM solution to accurately compute the near zone scattered 

magnetic field, and thus SFm via Equation (2.40). Figure 2.6 shows the magnitude of 

the surface current on the side at x = 0.5 m for N/A = 1, 5, and 19 segments per side. 

As more segments are added, the current shape changes, and attempts to satisfy the 

edge condition (for a 90° wedge) that the current near the edge approaches infinity 

as l/(distance)x/3 to the edge [20]. It is felt that in order to accurately compute the 

near zone scattered fields, it would (at a minimum) be necessary to employ MM ex- 

pansion functions which satisfy the edge condition. While this could be done for the 

perfectly conducting case [21]-[23], it would be considerably more difficult for finitely 

conducting shields since the edge condition is not known. 

2.6.2    Method 2: Using the Volume Equivalence Theorem 

A method for computing the total fields and the shielding factors, without the need 

to explicitly compute the scattered fields, will now be discussed. Assuming that the 

MM solution can provide a reasonable approximation to the polarization current, «7, 

then using the volume equivalence theorem of Equation (2.3), it can also provide 

a reasonable approximation to the total electric field in the shield. Substituting 

Equation (2.9) into (2.3), the (z polarized) electric field in the shield (-T/2 < t < T) 
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IS 

Using Equation (2.43) and Maxwell's equations, the magnetic field in the shield is 

H^VXE^(-äXt)^iE/f'»-™ (2.44) 

where the unit vector 1 = z x t is directed parallel to the surface of the shield. The use 

of Equations (2.43) and (2.44) to compute the near zone fields has two advantages. 

First, it avoids the anomalous behavior [19] associated with the computation of the 

extreme near zone scattered fields.   Second, it is a direct computation of the total 

electric and magnetic fields, and thus avoids the numerically difficult subtraction of 

fields in the numerators of Equations (2.36) and (2.40). One difficulty with Equations 

(2.43) and (2.44) is that they provide the fields in the shield, and not interior to the 

shield.  However, since the tangential electric and magnetic fields are continuous at 

the interior shield interface, here we simply take the average value of Ez(l,t = T/2) 

or Hi(l,t = T/2) as representative of the electric or magnetic fields in the interior of 

the shield, and thus 
Average |^(/i = T/2)| 

|£'(0,0)| k       ; 

Average |g,(M = T/2)| .       . SFm =      mm\      ' (   ] 

In practice, at ELF the fields are almost independent of circumferential position, Z, 

and the average fields can be replaced by the fields at any convenient value of I. 
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Chapter 3 

Numerical Results 

The first set of data will illustrate the accuracy and limitations of the MM solution. 

The insert in Figure 3.1 show an octagonal shield of mean radius 1 m, thickness T = 

1 cm, and conductivity a — 35 MU/m illuminated by a unit amplitude plane wave 

at / = 100 Hz. The MM solution for this octagonal shield will be compared to the 

eigenfunction solution [13] for a circular shield of the same thickness and conductivity 

and of mean radius 0.974 m (same circumference as octagon). The figure compares 

the Equation (2.43) MM (solid line) and eigenfunction computation (dotted fine) for 

the magnitude and phase of the total electric field along a line from the outer surface 

of the shield (t/T = -0.5) to the inner surface of the shield (t/T = 0.5). Since from 

Equation (2.3) the electric field in the shield and the volume polarization current differ 

by only a scale factor of ju(e — e0), Figure 3.1 shows that the MM solution is capable 

of very accurately computing the t variation of the equivalent current representing 

the shield. For the same geometry as was considered in Figure 3.1, Figures 3.2(a) and 

(b) show the Equation (2.44) MM and eigenfunction computation of the magnitude 

and phase of the magnetic field in the shield. This figure shows that overall the 

MM is doing a good job of computing the magnetic field in the shield, except very 

near the inner surface (t/T = 0.5). Figure 3.2(c) shows the MM and eigenfunction 

computation of the magnitude of the magnetic field for the region within 1% of the 

inner surface, i.e., 0.49 < t/T < 0.5, where it can be seen that the eigenfunction 

magnetic field is much smaller than the MM magnetic field at the inner surface of 

the shield. For the same geometry as was considered in Figures 3.1 and 3.2, Figure 
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Figure 3.1: The internal electric fields computed by the MM and by an eigenfunction 
solution. 

3.3 shows the <j> variation of the magnitudes of the electric and magnetic fields along 

the centerline of the shield, i.e., at t = 0. Note that this figure shows only the AC 

component of the fields computed as the total fields minus the average (over <f>) fields. 

Comparing Figures 3.1-3.3 shows that the AC component of the fields are about 4 

orders of magnitude smaller than the average fields. Also, the MM solution is doing 

an excellent job of computing the AC component of the electric field and thus the 

equivalent polarization currents. By contrast, the AC component of the magnetic 

fields is only order of magnitude correct. 
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Despite the fact that Figures 3.1-3.3 indicate that the MM solution is accurately 

computing the electric field and thus the equivalent polarization currents representing 

the shield, these currents are not sufficiently accurate to compute the extreme near 

zone scattered electric or magnetic fields. Thus the MM solution is inadequate to 

compute the electric or the magnetic shielding factors using the Method 1 Equations 

(2.36) or (2.40), respectively. By comparison, the Method 2 computation of the 

shielding factors is dependent upon the computation of the total fields at the inner 

surface t = T/2 using Equations (2.43) and (2.44). From Figure 3.1 and 3.2(c), the 

total fields at the inner surface are 

MM \Ez(t = 0.5T)|   =   0.000267|£'| 

Eigenfunction \Ez{t = 0.5T)|   =   0.000269|F|. (3.1) 

MM \H,(t = 0.5T)|   =   975|ff« | 

Eigenfunction \Ht(t = 0.5T)|   =   0.00716|#*|. (3.2) 

Thus, the MM solution appears to be more than adequate to compute the electric, 

but not the magnetic, shielding factor by Method 2. Figure 3.4 compares the MM 

and eigenfunction solution for the electric shielding factor of an octagonal shield of 

radius lm, conductivity a = 35 MU/m and thickness T = 1, 0.1, and 0.01cm versus 

frequency. Note the excellent agreement between the two solutions, and also that by 

computing SFe using Method 2 it is possible to compute electric shielding factors as 

small as -100 dB. 

The final set of data will investigate the importance of shield shaping on the 

electric shielding factor. For example, for a fixed length of shielding material, what 

would be the optimum shape of the shield to minimize SFe1 The insert in Figure 

3.5 shows a rectangular shield of height H, width W, thickness T = 0.1 cm, and 

conductivity a = 35 MU/m at / = 60 Hz. With the shield perimeter, IE + 2W, 

fixed at 1 m, the figure shows the Method 2 SFe versus the ratio H/W. Although 

the worst case or largest SFe occurs for a square shield with H = W, the important 

point to note from Figure 3.5 is that over a 100:1 range of H/W, SFe changes by less 
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Figure 3.4:   The Method 2 electric shielding factor of an octagonal shield versus 
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Figure 3.5: The Method 2 electric shielding factor versus the ratio of the height to 
the width for a rectangular shield of perimeter 1 m. 

than 0.1 dB. Thus, for a shield of fixed perimeter, the shape of the shield appears to 

have little effect on the electric shielding factor. For a square shield of conductivity 

a = 35 Mü/m at / = 60 Hz, Figure 3.6 shows SFe versus its perimeter for T = 1, 

0.1, 0.01, and 0.001 cm. 
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Chapter 4 

Conclusions 

This report has presented an integral equation and MM solution to the problem of 

TM transmission by a conducting shield at ELF. The equivalent volume polarization 

currents representing the shield are expanded in terms of physical basis functions 

corresponding to plane waves propagating from the outer to the inner and the inner 

to the outer surfaces of the shield. The MM solution for an octagonal shield is found 

to yield a current distribution which is in very close agreement with an eigenfunction 

solution for a circular shield. However, this current is not sufficiently accurate to 

compute the extreme near zone fields, and thus is not sufficiently accurate to directly 

compute the electric or magnetic shielding factors. An alternate method for com- 

puting the shielding factors is devised, based upon the use of the volume equivalence 

theorem to compute the total fields. This alternate method is found to be adequate 

to compute the electric, but not the magnetic, shielding factor. 

One approach to improving the MM solution would be to try to find better ex- 

pansion and weighting functions and also to more accurate methods for computing 

the elements in the MM matrix equation. It is the authors judgement that this ap- 

proach is unlikely to produce the required accuacy. A second approach would be to 

augment the standard MM matrix equation with additional equations which enforced 

continuity of the tangential fields at the inner and outer surfaces of the shield. These 

equations would then be solved on a least squares basis. 
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Appendix A 

Mutual Impedance Between 
Parallel Strips 

This appendix will present approximate closed form expressions for the mutual 

impedance between parallel strips. Without loss of generality, Figure A.1(b) shows 

Strip 1 of width W\ located along the -\-y axis. Strip 2 is of width W2 and is trans- 

lated a distance (xc,yc) from the origin. Both strips have unit surface current, i.e., 

Jj = J2 = 1 A/m. By definition, the mutual impedance between expansion current 

«7i and weighting current J2 is 
rVc+W2 

Z21 = - Ex{xc,y)J2dy (A.l) 
Jyc 

where E\ is the free space electric field of J\ given by 

Ex{x,y) = C fWl jM2\k0p') dy'      C = -^30 (A.2) 
Jo 4 

and where p' = Jx2 + (y — y')2 is the distance from the source point (0,7/') to the 

field point (x,y). At ELF, k0p' <C 1, and the Hankel function in Equation (A.2) can 

be approximated by [24] 

H^2\k0p') « 1 - J—hi(bp')     b = 0.8905fco. (A.3) 

Inserting Equation (A.3) into (A.2) and integrating [25] yields 

2C 
Efay) « CWx +j— {[Ayblnbpb - Ayb + xif}b] - [Ayalnbpa - Aya + xtßa}} (A.4) 

7T 

where as seen in Figure A. 1(a), Aya = y and Ayb = y — W\ are the y coordinates of 

the field point (x,y) with respect to ends a and b of Strip 1, and 

Paib = y/x2 + Aylb (A.5) 
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(a) E-j (x,y)  Geom. (b)  Z2i   Geom. 

Figure A.l: Geometry for the computation of (a) Ei(x,y) and (b) parallel Z2\. 

V>„,6 = tan"1 ^       - TT/2 < Va,6 < TT/2 (A.6) 
a; 

are the distances and angles from ends a and b to the field point. Note that E\ is 

finite at all (x,y). Using Maxwell's equations, the magnetic field associated with the 

electric field of Equation (A.4) is 

JWflQ 2,-K 
xln — + y(^fc- 1>a) 

Pa 
(A.7) 

which has logarithmic singularities at ends a and b. 

Inserting Ei(xc,y) from Equation (A.4) into (A.l) and integrating [25], the mutual 

impedance between Strips 1 and 2 is 

2(7 
Z2i « -CW1W2 - j—[(Fbd - Fbc) - (Fad - Fac)} 

7T 

where 

Fa = -p% In bpn - -Ay?- + xcAyirfij - ^ In W^) 
21 

(A.8) 

(A.9) 

in which Ay,j is the y coordinate of end j = c,d of Strip 2 with respect to end i = a,b 

of Strip 1, i.e., 

Ayac = yc,   Ayad = yc + W2,   Aybc = yc-Wu   Aybd = yc + W2 - Wx       (A.10) 
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Pij is the distance from end i = a, b of Strip 1 to end j = c,d of Strip 2, i.e., 

PH = yjxl + Ay?, (A.ll) 

and V'ii is the angle of the line from point i to point j with respect to the +x axis, 

i.e., 

if) a = tan -i 
AViJ 

Xc 

(A.12) 

Fad = F6c = IwfbibWt - \wl 
2 4 

For self impedances, xc = yc = 0 and W2 = Wi. In this case, Fac = Fbd = 0, and 

(A.13) 

Inserting Equation (A.13) into (A.8), the self impedance of Strip 1 is 

Zu « -CW2 l-^^-l) (A.14) 

In the evaluation of the self impedance for the trapezoidal cell of Figure 2.2(b), it 

is desirable to have a simplified version of Equation (A.8), so that the double integral 

of Equation (2.18) can be obtained in closed form. For Strips 1 and 2 within a 

trapezoidal cell whose thickness T is much less than its width Wn, \xc\, \yc\ <C W\$ 

and W2 ~W-[. In this case, dropping second order terms in xc and yc, Fac «0« FM, 

and 
■K a    _ 1 

(A.15) Fad = \w2\xc\ - lw* - W2yc + ±(W2
2 + 2W2yc)]*bW2 

7T„. ,       , 3„^2 1 2 
*ic = j^ikl - 4WT + Wiyc + 2^1 ~ 2Wiyc)ln6W^. (A.16) 

Inserting Equations (A.15) and (A.16) into (A.8) and dropping second order terms 

yields 

3. 1C 
-CWxW2+j— 

7T 

7T 
^W^W2)\xc\-^W^W2

2) 

+    \wZ\nbW2 + \wl\nbW1 

Letting W2 = Wx + AW (\AW\ < Wi,2), Equation (A.17) becomes 

.2(7 

(A.17) 

Z21 « Zn - CVFiAW^ + j— [TTWJ |ajc| - WiAW + WiAWln 6Wi] (A.18) 
7T 

in which the mutual impedance between Strips 1 and 2 is written as the self impedance 

of Strip 1 (Equation (A.14)) plus small correction terms. 
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Appendix B 

Mutual Impedance Between 
General Skew Strips 

This appendix will present approximate closed form expressions for the mutual 

impedance between general skew strips. Without loss of generality, Figure B.l shows 

Strip 1 of width W\ located along the +y axis. Strip 2 is of width W2 and extends 

from (xc,yc) at an angle ip (—7r < ip < ir) with respect to the +x axis. Both strips 

have unit surface current, i.e., Ja = J2 = 1 A/m. An arbitrary point (x,y) on Strip 

2 can be described by the parametric equations 

x = xc + lcosijj,   y = yc +I simp      0 < I < W2. (B.l) 

The mutual impedance between expansion current J\ and weighting current J2 is 

rw2 
Z2i = -[    Ei{l)J2dX. (B.2) 

JO 

where E\ is the free space electric field of J\. 

Inserting the ELF approximation for Ex of Equation (A.4) into (B.2) and inte- 

grating yields 

of 
Z21   w   -CW1W2-j—{[S{l = W21xc,ye-W1,1>)-S{l = 0,xe,ye-W1,rl>)] 

IT 

-[S(l = W2,xc,yc,rjj) - S(l = 0,xCJyc,^)]} (B.3) 

in which the S integral 

S{l,xc,yc,i>) = Sln(l,xc,yc,i>) - Sy{l,yc,ip) + Sit(l,xc,yc^) (B.4) 
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Figure B.l: Geometry for the computation of the mutual impedance between general 
skew strips. 

is written as the sum of the Sin, Sv, and Su integrals. 

The Sin integral is denned by 

Sin   =   J ylnbpdl = S1(l,xc,yc,ip) +S2{l,xc,yc,i>) (B.5) 

Si{l,xc,yc,ip) 

S2{l,xc,yc,i>)   = 

siW\   2l      2       2l — [w hvw   -u] 

• yc cos2 ip — xc cos ip sin f. 2 u^ 
u In w   —2u + 2v tan     —] 

26 - v 
u   =   b[l-\-(xc cost/) + yc sin tß)]  b = 0.8905Ao 

v   =   b(yc cosip — xcsmtl>) 

2 2,2 

(B.6) 

The Sy integral is defined by 

. .       f sm ip 2 
Sy{l,yc,V) = J y dl = ycl+ -y-/ . (B.7) 
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The Su integral is defined by a 

Sit(l,xc,yc,jj) = f a;tan"1- dl = cosil;Ki(l,a,b,c,d) +xeK2(l,a,b,c,d)      (B.8) 

with a = sin ip, b = yc, c = cos^, d = xc, and 

in which 

/-. al-\- b 
Ztan-1——:dZ = 

et -f a 
_tal + b] \l2      X2 

Un     clTd     i + 2^ 
?r r y, 

- — In 
2£ 1 Z 

,   y\2   x2 

l+z) +v 
Y2 1 IZ + Y 

\X\ 

2   ,   _2 X = ad-bc,   Y = ub + cd,   Z = az + c\ 

(B.9) 

(B.10) 

/_, al -]- b 
tan ,a/ = 

'"-"^lKJ-i1*^2^^- 
(B.11) 

If Equations (B.9) or (B.ll) are used to perform a definite integral from h to l2, and if 

the path of integration crosses the branch of the tan_1() function, i.e., l\ < —d/c < l2, 

then the following correction terms must be added to the definite integrals 

7T 

2 

d2      X)   .      rh        -i ** + &., 
—+ —I   for   /    Ztan       .      .dl 

Z2 I" cl + d 

7T—— for   /    tan * — -dl. 
cZ        Jh cl + d 

(B.12) 

(B.13) 

JThe authors with to thank Mr. Ibrahim Tekin for the evaluation of the inverse tangent integrals, 
including the branch correction terms. 
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